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Summary of Working Group Session 2E: Materials Science*
•Radiation damage of materials is inherently a multiscale phenomena

and hence is well-suited for advanced simulations
−Over 20 orders of magnitude time scale (10-14 to >106 s) and 10 orders of

magnitude length scale (10-10 to 1 m)
−Currently close to being able to perform simulations at the same length &

time scale as experiments
•There are clear near-term advances that can be achieved with leadership-
class simulations

•Grand Challenge: Develop experimentally validated predictive
performance models for materials in a hostile environment (high
temperatures, damage levels/burnups, corrosive coolants)
−Numerous corollary grand challenges were also discussed

• Long-term goal: reduce the fuel & material qualification time from
current 10-15 year period to ~7 to 10 years, with reduced cost and
increased confidence of extrapolation to untested regimes
−Advanced simulations will be the key driver to achieving this goal, but

experimental validation is also essential

*Steve Zinkle, WG chair and
Chuck Henager, rapporteur
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Summary of Working Group Session 2E: Materials Science Cont’d
•Discussions covered structural materials (~65%), fuels (~25%), waste

forms (~10%), and functional materials (<5%)
•Diversity of materials systems and broad range of time/length scales is

both an asset and a hindrance
−Numerous opportunities for commonality/complementarity leveraging with

broader materials science modeling community
−Practical logistic problems with investigation of too many materials and

physical phenomena
• Extended discussion on multiscale code integration issues

− Improved physics-based “coarse-graining” methodologies are needed to
accurately pass information between length/time modeling scales
•Existing codes are generally “stand-alone” platforms, not part of an
integrated suite of codes

−New paradigm?: Development of community-validated suite of standardized
codes capable of running on various leadership-class computers
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B.D. Wirth, UC-Berkeley

Radiation damage is inherently multiscale with interacting
phenomena ranging from ps to decades and nm to m
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nm-µm

Fission reactor fuels multiscale modeling places high emphasis on
chemistry and physical property changes
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